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result ing from rep1 acement of the pseudo, two-body transit ion operators 

appearing i n  e i ther  the Watson or the Kerman-McManus-Thaler formalisms are 

comparable i n  size to the mu1 t i p l e  scattering corrections. 
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performed and energy dependencies s tudied.  
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1. Introduction 
- -  

Since the appearance of Watson's mu1 t i  p l  e scattering paper') there have 

been numerous formal i sms and cal cul a t i  onal devel opments i n  the fie1 d o f  

hadron-nucl eus scattering. Among these, the Kerman-McManus-Thal er (KMT) 

formalism2) has been the most widely used. 

series for  an opt ical  potential has an i n f i n i t e  number of terms, described 

through the use o f  suitably chosen pseudo two-body operators, i t  must be 

truncated for practical  calculations. The  most frequently used approximation, 

which keeps only the f i r s t  term of the mu1 t iple scattering series, is  known as 

the si ngl e scattering approximation. The double scatter1 ng and higher order 

terms are then neglected on the premise t h a t  they correspond t o  two-particle 

correlations and higher, which are usually assumed to  be small. A further 

approximation i s  often made i n  which the pseudo two-body operator i s  replaced 

by the free two-body t-matrix. Th i s  approximation, known as the impulse 

approximation, i s  believed t o  be v a l i d  for  h i g h  incident energies. 

i f  we w i s h  t o  perform an optical potential calculation beyond the impulse 

approximation, the two lowest order corrections t h a t  should be considered 

are: ( i )  the correction due t o  the replacement of the pseudo two-body 

operator by the free t-matrix, namely the propagator correction or impulse 

correction, and ( i i )  the next highest order term i n  the multiple scattering 

series, namely the double scattering term. 

tendency t o  include either b u t  not b o t h  corrections 3,4) .  

Because the multiple scattering 

However, 

In the literature, there i s  a 

In  this paper, we show t h a t  these two corrections are comparable i n  size 

f o r  either the Watson or the KMT formalism; therefore, we should include bo th  

of them i n  any calculat ion beyond the first-order impulse approximation. This 

p o i n t  was f i r s t  discussed by Saperstein 5, for the Watson formalism. We 

derive expressions for these corrections i n  both the Watson and KMT 
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formalisms. 

(neglect of the target nucleon momentum variable i n  the intermediate states),  

the single scattering, or the first-order opt ical  potential w i t h  the impulse 

approximation, has a small er total correction i n  the KMT formal ism t h a n  i n  the 

Watson formalism. A t  this point, we note t h a t  Tandy e t  a l .  4 ) ,  using a three- 

body model for the f i  rst-order opt ical  potential, obtained results indicating 

t h a t  the f irst  order Watson optical potential could be closer t h a n  KMT t o  the 

impulse approximation result; however, they neglected consideration of double 

scattering. 

correction terms compared t o  the first-order impul se approximation. 

will make no direct comparison w i t h  da t a ,  since o b t a i n i n g  a close f i t  t o  the 

da ta  i s  h i g h l y  model dependent i n  the sense t h a t  i t  depends upon the choice of 

t-matrix and the target density funct ion .  

correction terms i n  a manner t h a t  is less model dependent. 

assume the closure and factorization approximations t o  be v a l i d .  

Nonrel ativi s t i c  kinematics are used. 

We also demonstrate t h a t ,  under the extreme closure approximation 

In this work, we are interested only i n  the relative sizes of the 

Hence, we 

Instead, we choose t o  study the 

For this work, we 

In  this section, we briefly rederive, for  completeness, the multiple 

scattering series of the op t i ca l  potential i n  bo th  the Watson and KMT 

formalisms. We will f i r s t  derive the Watson optical potential by starting 

w i t h  the (A+l)-body Lippmann-Schwinger equation for  the transition 

operator T, 

T = V + Va N GOT , 

where the (A+l)-body unperturbed Green function Go i s  given by 

(1) 
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( E  - ho - H A  t 

Here ho and are the pro ecti le ,ietic energy operator and A-body 

target Hamiltonian, respectively. V i s  the residual interaction between the 
A 

projectile and the target nucleons, e.g., V = 1 voi , where voi i s  the two- 
i=l  

body interaction between project i le  and the i th  target particle and A i s  the 

number of target particles. I n  (1) we have displayed the target 

antisymmetrization operator N a explicitly. I t  i s  a reminder t h a t  when 

expanding the many-body Green's funct ion Go i n  the intermediate states, we 

should only use the properly antisymnetrized target states. To o b t a i n  the 

elastic scattering equation, we define the projectors P and Q by 

and 

a =  N P + Q ,  ( 4 )  

where oo i s  the antisymmetrized target ground state. Us ing  ( 3 )  and (41, we 

can rewrite (1) i n  the  form of two coupled equations as 

T = U t U P Go P T ,  

and 

U = V + V Q G o Q U  . 



5 r . 1  

The operator U appearing i n  these l a s t  two equations i s  the  o p t i c a l  

po ten t i a l  operator, and (6) gives U i n  terms of the  res idua l  i n t e r a c t i o n  V. 

To express (6) i n  a m u l t i p l e  sca t te r ing  ser ies  form, we w r i t e  U as 

U = 
A 

i=l 
Uoi so t h a t  (6) becomes 

and 

Now def ine  a pseudo two-body operator T by 

T = V o i  + ~~j Q Go Q V o i  . o i  

I n  terms o f  t h i s  operator T, we can r e w r i t e  ( 7 )  as 

The l a s t  equation (10) i s  the m u l t i p l e  sca t te r i ng  ser ies  f o r  the  Watson 

o p t i c a l  po ten t i a l  which i s  t o  be used i n  (5) f o r  the  e l a s t i c  sca t te r i ng  

amplitude. To a r r i v e  a t  the comparable KMT resu l t ,  we s t a r t  w i t h  (1)  by 
A .. 

i n s e r t i n g  T = 1 Toi t o  g ive  
i = l  
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I 
We now define the KMT pseudo two-body operator T by 

I 

In terms o f  T~~ , (11 then becomes 

I I 

Since the matrix element of T must be taken between antisymmetric 

target  s ta tes  and the target intermediate s ta tes  t o  be inserted are also 

antisymmetric, the matrix elements involved i n  (13) are symmetric. Therefore, 

the matrix elements of each T ~ ~ ,  i=l, 2,  --, A are identical ,  and the i#j  

rest r ic t ion i n  (13) can be accounted for  by a mere counting factor;  hence, we 

arrive a t  

I I 

T = AT + ( A - 1 )  T a GOT , 
N 

o r  

I I I I 

T = ( A - 1 1 ~  + ( A - 1 )  T '  N a GOT , 

where T and T '  are related by 

(14 )  

(15)  

A-1 .,. I 
T = -  

A '  (16)  
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Inserting projectors P and Q defined i n  (3 )  and ( 4 )  gives 

I I I I 

= u  + u  P G o P T ,  
and 

or  

n 

Equation (19) i s  the multiple scattering series for  the KMT optical 

potential to be used i n  (17) .  The physical scattering amplitude i s  obtained 

by rescaling w i t h  the ( A / A - l )  factor. 

Although these two formalisms are different i n  appearance (e.g., the 

pseudo two-body operators T and T and the counting factor coefficients),  the 

physics contained i n  them i s  the same. T h u s ,  i f  we solve (5) w i t h  (10) as 

i n p u t ,  we expect the same resul t  as would be obtained by solving ( 1 7 )  w i t h  

(19) as  i n p u t  and multiplying the result by a factor ( A / A - l ) .  The 

relationships between these two formalisms are studied i n  ref. 6). 

these two formalisms are expected t o  give the same resul t ,  one must use the 

ful l  optical potentials given by (10) and (19) i n  the i r  respective scattering 

equations. In practice, i t  i s  impossible t o  use the f u l l  optical potential i n  

e i ther  formalism. 

f i r s t  term i n  the optical potential series which i s  usually referred t o  as the 

single scattering or the first-order optical potential (FOP). 

case, the FOP is  given by 

Although 

Therefore, the most common practice i s  t o  retain only the 

For the Watson 
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and f o r  the KMT case by 

(21 

I 
where the two-body operators T and T are given by (8) and (121, 

respect ive ly .  Clear ly,  i t  i s  then expected that, when t r u n c a t i n g  the o p t i c a l  

p o t e n t i a l  t o  any f i n i t e  order, the r e s u l t s  o f  the two d i f f e r e n t  formalisms 

w i l l  be d i f f e r e n t .  Another common p rac t i ce  i s  the replacement o f  the pseudo 

two-body operator T o r  T by the f ree two-body t-matr ix,  which i s  known as 

the  impulse approximation. I n  t h i s  approximation, the Watson FOP becomes 

I 

and f o r  KMT i t  i s  

where the  free two-body t - m a t r i x  i s  defined as 

- 1 
to i  - 'oi + 'oi e-ho-hl+in to i  
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I t  i s  interesting t o  note t h a t  in this approximation, i.e., FOP under the 
I 

impulse approximation, U and U differ only by a scaling factor .  Since U 

and  U given by ( 2 2 )  and (23) are the most commonly used, i t  is  useful t o  

investigate how accurate these approximations are. We know, i n  general, t h a t  

FOP w i t h  the impulse approximation gives reasonably accurate predictions a t  

relatively h i g h  energies (- 400 MeV). 

mu1 t iple scattering corrections are negligible and the differences between 

free t and T or T 

small? 

correction i s  most important. The best way i s  of course t o  compare the FOP 

U and U given by (22 )  and (23) w i t h  their respective fu l l  optical 

potentials. Since i t  is  impossible t o  use the f u l l  optical potential we will 

assume t h a t  the multiple scattering series for  U and U 

(19) converge rapidly enough t h a t  the first two terms give us a v a l i d  

approximation t o  the full optical  potential. This is reasonable because the 

t h i r d  and higher order terms correspond t o  quantities involving three and more 

particle correlation functions, which are expected to  be much smaller. 

I 

Does this occur, however, because the 

I 

are small , or  because the t o t a l  correction itself i s  

I t  would a lso be interesting t o  know a t  w h a t  energies either 

I 

I 

given i n  (10) and 

I 

In  terms of the free t-matrix, U and U , up t o  the second order i n  t, 

can be written as  

U = A t  + A t  (QGoQ - g o ) t  + A ( A - l ) t Q G o Q t  , 

and 

(25) 

2 I 

U ( A - l ) t  + ( A - l ) t ( G o  - g o ) t  + ( A - 1 )  t Q G o Q t  (26)  
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Here go i s  the free two-body propagator appearing i n  (24 ) .  In (25) and 

(261, the respective second terms on the r i g h t  sides correspond t o  the 

propagator or impulse correction arising from the use of free t, and the 

third terms correspond t o  the double scattering correction. We w i  11 

demonstrate i n  this work t h a t  these two types of corrections are not 

negligible themselves b u t ,  they are comparable i n  size and there are some 

effective cancellations between them. Corrections due t o  the antisymmetri- 

za t ion  between projectile and target  nucleons 7,8) are  not  considered since 

the nature and origin of this correction i s  different. 

noted t h a t  we are working i n  the multiple-scattering formalism i n  which we do 

n o t  include the projectile-target antisymmetry from the beginning. 

purpose is  t o  study the consequences of using the FOP under the impulse 

approximation. 

I t  shou ld  a lso be 

Our only 

3. Evaluation O f  The Potentials 

In order t o  evaluate the opt ica l  potentials given by (25) and (261, we 

form matrix elements of U and U between i n i t i a l  and f ina l  elastic channel 
I 

I 1  
states; <U > 

evaluate four 

I 1 1  

E <K B ~ (  U 

different types of matrix elements, viz. <t>, < t g o t > ,  

I K @ > 9  where U" is  either U or U:. We then 
.Ire d o  

< t G o t >  and < t Q  G o Q t > .  

matrix and we also employ the extreme closure approximation 2), i n  which we 

neglect the struck nucleon energy and the excited state target energies i n  the 

In evaluating these matrix elements we use a local t- 

energy denominator. As a result, we can use a form factor sum rule 2) 

I 1 I 
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where p ( q )  i s  the  Four ie r  transform o f  the  s ing le  p a r t i c l e  dens i ty  p ( r ) ,  
i 

bw- rx 

and C(q, q ) 

C(r, r ’ )  given by 

i s  t he  Four ie r  transform o f  t he  p a i r  c o r r e l a t i o n  f u n c t i o n  - *  
I 

w -  

b 

Here p ( r ,  r i s  the two-par t ic le  densi ty.  A f t e r  employing a l o c a l  t- o -  v- 

matr ix,  extreme c losure approximation, and the  sum r u l e  given i n  (271 ,  we 

a r r i v e  a t  

and 

The func t ions  I 1 ( q ) ,  12 (q)  and 1 3 ( q )  are defined as - * (r 

E k - E k  + i n  h 
1 
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and 

I I I  I I t  I t  

I 

where the momentum transfer q = k - k 

have kept the terms proportional t o  the A factor. Because the coefficient 

I t  should be noted t h a t  i n  (32) we 
u . P - v -  

of <t Q Go Q t> is ( A - 1 l 2  i n  the KMT case and A ( A - 1 )  i n  the Watson case, these 

terms become comparable i n  size t o  the impulse correction terms. Now from 

(25) and (26 )  we have 

and 

In each of the l a s t  two equations, the terms i n  the f i r s t  s e t  of curly 

brackets corresponds t o  the propagator correction, and the terms i n  the second 

curly brackets correspond t o  the double scattering correction. 

t h a t  these two corrections are o f  comparable s ize  and there will be some 

cancellations between them i n  bo th  the Watson and KMT optical potentials. We 

emphasize t h a t  these cancellations result  from the use of the extreme closure 

We note here 
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approximation. 

p a r t i a l  cance l l a t i on  could be expected. A f t e r  the cancel la t ions,  we have 

I f  the extreme closure approximation were n o t  used, on l y  

I n 

It i s  i n t e r e s t i n g  t o  note that the t o t a l  co r rec t i on  f o r  the  f i r s t - o r d e r  

KMT depends on ly  on the func t ion  13(q) 

c o r r e l a t i o n  which, f o r  an uncorrelated nucleus, vanishes. Therefore i t  cou ld  

be a poss ib le  explanat ion f o r  the  success o f  f i r s t - o r d e r  KMT w i t h  impulse 

which invo lves the  two p a r t i c l e  
rr 

approximation f o r  medi um and h igh energy regions. 

4. Results And Discussion 

We now compare the f i r s t - o r d e r  approximation t o  the  more complete forms 

given by (38) and (39) which include the  propagator and double sca t te r i ng  

correct ions.  Of course one should consider the o f f - s h e l l  and non-local 

e f f e c t s  i n  order  t o  make a complete comparison. 

l o c a l  

l oca l .  

approximation f o r  low energies, bu t  nevertheless, fo r  t h i s  i n i t i a l  study, we 

assume them t o  be adequate. Because the  on-shel l  and near on-shel l  ma t r i x  

elements o f  the  o p t i c a l  p o t e n t i a l  give the major c o n t r i b u t i o n  t o  the 

s c a t t e r i n g  amplitude, we w i l l  concentrate our study on the  on-shell ma t r i x  

elements. 

Since we have chosen a 

t, the expressions f o r  <U> and <U’> i n  (38) and (39) are already 

Such l o c a l  representat ions o f  t he  co r rec t i on  terms may n o t  be a v a l i d  

I n  what fol lows, we ca lcu late the terms invo lved i n  (38) and (39) 
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by employing a spin-isospin averaged local t-matrix 9 ) and a Gaussian shape 

nuclear form factor. 

w i t h  experimental data, b u t  are interested only i n  the overall effects  of the 

correction terms, we feel just i f ied i n  the use of this simple t-matrix and 

nuclear form factor. 

Since we do n o t  intend to  make a detailed comparison 

The free N-N t-matrix used i s  of the form9) 

where i s  a complex quantity depending on e, the N-N C-M energy; 

U, the total  N-N cross section; and a ,  the real-to-imaginary-part r a t io  o f  

the forward scattering amplitude. 

Fourier transform of a harmonic-well shape density') given by 

C(e,u,a) 

For the nuclear form factor, we use the 

The correlation function i n  configuration space i s  chosen t o  be 10, 11 

C(r, r') = p ( 7 )  ~(7') G ( (  7 - T' I )  , (42)  
' -  

w i t h  the function G ( 1  r - r 1 )  given i n  a parameterized form. 

expressions of these functional forms and parameters can be found i n  

refs. 9, 10, and 11. 

Detailed 

In figs.  1 and 2, we show the on-shell optical potential as a function of 

momentum transfer F. In  f i g .  1 the curve denoted by UWl corresponds t o  the 

f i rs t -order  approximation for  the Watson optical potential, UW12 corresponds 

t o  the potential w i t h  impulse correction only, UW13 refers to  the one w i t h  

double scattering correction alone, and UW123 contains both types of 

corrections and corresponds t o  the expression given by (38). Similar 



15 1 .  

notat ion i s  used for the KMT potential i n  f i g .  2. 

on-shell matrix elements are calculated for a 100 MeV proton projectile 

incident on a l60 target nucleus. Serious overestimations or underestimations 

of the real and imaginary parts of the on-shell optical potentials can be seen 

for both Watson and KMT formalisms a t  t h i s  energy. 

these corrections are of comparable magnitude, and they should b o t h  be 

included i n  any serious calculation beyond the use of the first-order impulse 

approximation. 

momentum transfers. 

I n  both figs. 1 and 2, the  

I t  i s  obvious a lso  t h a t  

We also note here t h a t  the corrections become larger a t  higher 

In figs. 3, 4, 5, and 6,  we show the percentage difference between the 

on-shell optical potential w i t h  both corrections denoted by U(') and the one 

given by the first-order approximation denoted by U ( l ) .  The percentage 

difference i s  defined as 

We show calculated results for 100, 200, and 300 MeV incident l a b  

energies for  the proton - l60 optical potential. A t  100 MeV the real part of 

the Watson potential gives a 16% difference a t  the forward angle and about  50% 

difference a t  q = 2 fm". A l t h o u g h  KMT results yield a smaller percentage 

difference in this  momentum transfer range, i t  i s  obviously not negligible. 

This leads us t o  the conclusion t h a t  the f i r s t  order 

not  v a l i d  a t  this energy for either formalism. As the incident energy 

increases, the percentage differences becomes smaller for both real and 

imaginary parts o f  the on-shell po ten t i a l  for  each formalism. A t  300 MeV, the 

real p a r t  of the KMT potential has less t h a n  a 1.7% difference i n  the range 

q = 0 t o  q = 2 f f l ,  while the Watson potential  still  gives an 8% t o  16% 

( t p )  approximation i s  
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difference i n  the same momentum transfer range. Although this does n o t  imply 

t h a t  the KMT formalism w i t h  the t p  approximation i s  absolutely reliable a t  

this energy because of possible contribution from non-local and off-shell 

effects,  i t  suggests that  the t p  (KMT) 

energy. 

potential decreases as  the incident energy increases, there remains non- 

neg l ig ib l e  contributions from the correction terms even a t  300 MeV. We also 

note here tha t  the KMT formalism always gives a smaller total  correction a t  

a l l  energies. I t  must be emphasized tha t  a l l  our conclusions rely upon the 

approximation is reasonable a t  this 

Note a1 so that ,  a1 though the percentage difference i n  Watson on-she1 1 

extreme closure approximation assumption and the f ac t  tha t  off-shell and non- 

local effects  were not considered. We suggest tha t  a fu l l  scattering 

cal cul ation should be performed which i ncl udes both impul se and double 

scattering corrections simul taneously and consistently. 

ini t ia ted.  

Work on this has been 

5 .  Concl usion - 
I t  has been shown that,  i n  the mu1 t i p l e  scattering formal isms for the 

optical potential, the propagator correction to the impulse approximation and 

the double scattering correction are of the same order. 

cl osure approximati on i s assumed, then s i  zabl e cancel 1 a t i  ons between these two 

I f  the extreme 

types of corrections occur. 

one type of correction i n  any calculation beyond f i r s t -order  under the impulse 

Therefore, i t  may be incorrect t o  include only 

approximation. We calculated the on-she1 1 optical potential for  both the 

Watson and the KMT formalisms and demonstrated tha t  fo r  the extreme closure 

approximation, the KMT potential has a smaller correction. A complete 

sca t te r i  ng cal cul a t i  on incorporating the above-menti oned corrections i s i n  

progress. 



17 

6. Acknowl edgements 

Th is  work has been supported i n  p a r t  by NASA Grant No. NCCI-42. The 

t h i r d  author (P. A. D . )  acknowledges support i n  p a r t  by the  Nat ional  Science 

Foundation under Grant  No. NSF-PHY-8411009. 



1 8  

References 

(1 )  K. M. Watson, Phys. Rev. - 89, (1953) 575. 

(2) A. K. Kerman, H. McManus and R. M. Thaler  
551. 

Ann. Phys. (N.Y.) - 8, (1959) 

(3 )  J .  F. Reading and Alan D. Mackeller, Phys. Rev. - 173, (1968) 1026. 

(4)  P. C. Tandy, E. F. Redish and D. Bo l le ,  Phys. Rev. L e t t .  - 35, (1975) 921. 

(5 )  A l v i n  M. Saperstein, Ann. Phys. (N.Y.) - 99, (1976) 72. 

(6 )  M. A. Nagarajan, W. L. Wang, D. J .  Erns t  and R. M. Thaler, Phys. Rev. - C 1 1 ,  (1975) 1167. 

(7 )  A. P icke ls imer  and R. M. Thaler, Phys. Rev. - C32, (1981) 42. 

(8 )  Kh in  Maung Maung and P. C. Tandy, Phys. Rev. - C34, (1986) 2008. 

(9 )  L. W. Townsend and J .  W. Wilson, NASA Ref. Pub. RP-1134, 1985. 

(10) H. Garcilazo, Nuc. Phys. - A302, (1973) 493. 

(11) E. Oset, Phys. L e t t .  - 658, (1976) 46. 



19 

Figure Captions 

Fig. (1) - The r e a l  p a r t  of the Watson o p t i c a l  po-entia1 w i t h  d i f f e r e n  

Fig.  (2) - The r e a l  p a r t  of the KMT o p t i c a l  p o t e n t i a l  w i t h  d i f f e r e n t  

c o r r e c t i o n  terms. 

c o r r e c t i o n  terms. 

Notation i s  explained i n  the t e x t .  

Notation i s  explained i n  the  t e x t .  

Fig. ( 3 )  - The percentage di f ferences A as def ined by Eq. (43) vs { the  
momentum transfer.  A for the Watso and KMT p o t e n t i a l s  are shown 
f o r  t he  case o f  100 MeV nucleon on psO. 

Fig. (4) - Same as Fig.  (31 ,  but  f o r  200 MeV. 

Fig. ( 5 )  - Same as Fig.  (31,  bu t  f o r  300 MeV. 
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